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Abstract. We study a quantum generalization of the infinite-range Sherrington–Kirkpatrick spin-
glass model with biaxial crystal-field effects described by two uniaxial anisotropy parameters
Dx and Dy . For spin dimensionality S = 1 we report an analytical and numerical analysis
in the (T ,Dx,Dy) parameter space (with T being the temperature). For D ≡ Dx = Dy the
model effectively becomes classical and identical with the crystal-field-split spin-glass Ising model
(introduced by Ghatak and Sherrington) showing a discontinuous phase transition to the spin-glass
phase on a portion of the T –D line.

1. Introduction

Various types of anisotropy have a profound influence on the spin-glass (SG) phase of solids.
Examples are anisotropies due to the crystal field of the host and non-magnetic impurities
which affect the spin interaction symmetries. For example, strong uniaxial anisotropy of the
magnetic susceptibility was found experimentally in a number of hexagonal metallic spin-glass
systems [1–3] (such as dilute ZnMn, CdMn and MgMn) and this has stimulated theoretical
research.

From a theoretical point of view, anisotropy gives rise to several new features which
have been investigated for classical spin models both with and without a magnetic field, and
a multiplicity of phases have been found [4, 5]. The corresponding quantum spin problem
can yield results which are qualitatively different from their classical counterparts [6, 7]. For
example, when the negative uniaxial anisotropy is large for integer spins at low temperatures,
one obtains in the quantum case condensation into a state resulting in a non-magnetic spin
phase accompanied by the destruction of the spin-glass character [6], whereas in the classical
case the spin-glass phase exists for arbitrary negative value ofD [4]. Similarly, for large cubic
anisotropy (the sign of which depends on the spin) and for integer spin, the ground state is
non-magnetic and the spin-glass order is absent [8]. Recently, anisotropic biaxial quantum
spin systems have emerged as good candidates for displaying first- or second-order phase
transitions around the crossover temperature between the thermal and quantum regimes for
the escape rate (depending on the anisotropy constant and the external magnetic field; see
references [9]).

In the present paper we consider the properties of a quantum Ising-like model with biaxial
crystal-field effects. In physical terms, an Ising SG with a biaxial crystal field is described by a
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model in which single-ion uniaxial energies along two axes are added to the random isotropic
Ising exchange interaction. As we shall see, the model can exhibit a continuous paramagnet-
to-spin-glass transition within the range of crystal-field parameters corresponding to a doublet
ground state for an isolated spin, but both continuous and discontinuous transitions for the case
of an isolated spin singlet, ground states with a tricritical point separating these transitions.

The Hamiltonian of the model is given by

H = −1

2

N∑
i,j=1

JijS
z
i S

z
j −

N∑
i=1

[
Dx(S

x
i )

2 +Dy(S
y

i )
2
]

(1)

where S = (Sx, Sy, Sz) is the quantum spin operator associated with the local moment S at
site i = 1, . . . , N . The Jij (i �= j) are quenched, random exchange interactions governed by
independent Gaussian distributions with mean zero and variance J/

√
N . The second term in

equation (1) gives rise to uniaxial energy splitting (along the z-direction) forDx = Dy , whereas
for Dx �= Dy there is biaxial anisotropy in the xy-plane. Using S2

x + S2
y + S2

z = S(S + 1) we
can write the second, single-body term in the Hamiltonian (1) as
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In particular, for � = 0 the quantum Hamiltonian (1) reduces to the purely classical model
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(Szi )
2 (3)

previously studied by Ghatak and Sherrington [10]. They showed that the model possesses
unusual features, manifesting both continuous and first-order phase transitions. Lage and de
Almeida [11] and also other groups [12] investigated the stability of the Ghatak–Sherrington
solution and have demonstrated a number of subtleties of this model. In the present paper the
quantum generalization (1) enables us in particular to recover the Ghatak–Sherrington solution
from the extended parameter space (kBT ,Dx,Dy). As in the paper of Ghatak and Sherrington
we restrict ourselves to a case corresponding to the lowest non-trivial spin value S = 1.

2. Formalism

Determination of the properties of quantum spin glasses is a non-trivial problem due to the
non-commutativity of the operators in the Hamiltonian. The addition of quantum fluctuations
generally precludes an exact solution—even for the paramagnetic phase—commonly used in
the spin-glass theory mean-field limit. A number of studies of various models have shown that
the intrinsic difficulty originates from the presence of a dynamical self-interaction induced by
averaging over the randomness. This self-interaction plays the role of an order parameter and
has to be determined self-consistently—in contrast to the case for classical spin glasses—even
in the paramagnetic phase. However, in most cases an attempt to solve this dynamic problem
leads even in the simplest approximations to integral equations involving the dynamic self-
interaction [13]. As an alternative approach, the Trotter–Suzuki formula [14] may be used,
recasting the problem into a classical d + 1 equivalent, with long-range interactions. This
classical model may then be studied numerically using exact spin summations or Monte Carlo
techniques [15]. Unfortunately, this approximation is not able to penetrate the temperature



The tricritical point in the quantum Ising S = 1 spin glass 5729

region close to T = 0 and suffers from numerical difficulties with direct spin summations
or the so-called negative-sign problem in Monte Carlo calculations for non-Ising models
[16]. An approximate analytically tractable solution to the problem can be obtained by
replacing the dynamic self-interaction by an appropriate time average. Then, the resulting
equations are readily solved and the phase diagrams can be computed. In the context of
the Matsubara imaginary-time and replica approach this method is referred to as the static
approximation [17], while for the real-time thermo-field description we are dealing with the
instantaneous approximation [18]. While conceptually simple, these approximations offer
a first step towards the description of quantum phase transitions in disordered systems, and
for many systems with complicated interactions and/or higher dimensions of spin variables
they seem to be the only tractable approaches [19]. In this paper we employ the thermo-field
dynamics (TFD) method [20]. It is based on a real-time, finite-temperature, quantum field
theory, and it is a quantum analogue of the dynamical Martin–Rose–Siggia approach [21]
used to deal with classical spin glasses [22]. A detailed procedure for applying the TFD
method to spin-glass models has been described in reference [23]. Here we sketch this
approach, giving only those points necessary for implementing the method for the case under
consideration.

We start from the disorder-averaged generating functional for the real-time finite-temp-
erature causal Green’s functions in the form

〈Z[η, {Jij }]〉J =
∫ ∏

ab

DQab exp(−NL[Q] +�[η]) (4)

where Z[η, {Jij }] is the unaveraged generating functional for a fixed realization of random
bonds and �[η] = Tr(Qη)/J 2 represents the source term. The effective Lagrangian is

L[Q] = Tr Q2 − ln�[Q] (5)

where
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)
.

Here, the time-ordered exponential results from the interaction picture, and Qab(t, t ′) =
Qba(t ′, t) represents a symmetric time-dependent tensor field. The effective time-dependent
single-site thermal Hamiltonian is given by

ĤQ(t, t
′) = −

∑
ab

(εaεb)
1/2JQab(t, t ′)Saz (t)S

b
z (t

′) (6)

where a, b = 1, 2 are the TFD ‘dynamic replicas’ (ε1 = 1, ε2 = −1) labelling the collective
fields JQab which act as dynamic self-interactions between time-dependent spin operators

Saz (t) = exp(−iH0t)S
a
z exp(iH0t).

Finally

〈O,β| · · · |O,β〉 = Tr e−βH0 · · · /Tr e−βH0 . (7)

From equation (6) it can be seen that the quantum generalization of the problem results in a time-
dependent self-interaction JQab(t, t ′) between spin operators at the same site, which must be
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determined self-consistently. In the limit N → ∞, the steepest-descent method can be used,
giving the following equation for the stationary-point value of the dynamic self-interaction:

Qab
0 (t, t

′) = 1

2
(εaεb)

1/2JGab(t, t ′) (8)

where the causal Green’s function is defined as

Gab(t, t ′) = −i
〈O,β|TtSaz (t)Sbz (t ′)UQ0(−∞; +∞)|O,β〉

〈O,β|TtUQ0(−∞; +∞)|O,β〉 . (9)

The correspondence with measurable quantities is achieved by decomposing the Fourier
transform of Gab(ω):

Gab(ω) = [UB(ω)τ̂G(ω)UB(ω)]
ab

= [
τ̂G(ω)

]ab − 2i
Creg(ω)

eβω + 1

[
1 eβω/2

eβω/2 1

]
+Gab

sing(ω). (10)

Here UB(ω) is the thermal transformation matrix [24], whileG
ab
(ω) is the matrix of retarded

(advanced) GR (A)(ω) Green’s functions:

G
ab
(ω) =

[
GR(ω) 0

0 GA(ω)

]
(11)

and

τ̂ =
[

1 0
0 −1

]
. (12)

The quantity Creg(ω) in equation (10) refers to the matrix of the thermodynamic correlation
functions in the spin-component space which is related toGR(ω) by means of the fluctuation-
dissipation theorem. Furthermore, it turns out that the time-persistent part GR

sing(ω) has the
form

Gab
sing(ω) = −2π iqδ(ω)

[
1 1
1 1

]ab
(13)

where q is the Edwards–Anderson [25] spin-glass order parameter which is non-zero in the
spin-glass phase.

3. Determination of critical lines

The location of the spin-glass transition can be described by the condition q = 0 or, equiv-
alently, by the divergence of the inverse relaxation rate [22] characterized by a generalized
damping function γ (ω), defined as

γ−1(ω) = i
∂G−1

R (ω)

∂ω
(14)

which diverges in the static limit (ω → 0) along the critical line. The condition for divergence
of the damping function γ−1 is

1 = Jχ (15)

where

χ = lim
ω→0

GR(ω) = lim
ω→0

GA(ω). (16)

Because of the appearance of the dynamic self-interactionJQab(ω) in the effective thermal
Hamiltonian (6), the evaluation of equation (9) is difficult. For the quantum spin-glass problem
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an exact calculation of the transition lines requires precise knowledge of the time dependence
of the dynamic spin self-interaction involved. This means that the calculation of the exact
phase boundary will depend on the detailed time dependence ofQab(t) (and, correspondingly,
the analogous quantity in the ‘imaginary-time’ Matsubara approach with the replica method).
For this reason we focus on the effects of quantum fluctuations on a timescale such that the
finite-time part of the dynamic self-interaction can be represented by an instantaneous term†
which simplifies the time dependence of Qab(t):

Qab(t − t ′) = 1

2
(εaεb)

1/2Jχδ(t − t ′)δab. (17)

It seems that the complexity of the problem (in particular the spin value greater than S = 1/2)
prevents an analytically tractable approach which goes beyond the ansatz (17). In the above-
mentioned Matsubara method, usually one resorts to similar simplifications—for example,
discarding the ‘imaginary-time’ dependence of the dynamic self-interaction (the so-called
static approximation). As was pointed out elsewhere [28], the static and instantaneous
approximations will give rough upper and lower bounds, respectively, for the critical line.
Therefore, the exact phase boundary should be located in the region between two curves
corresponding to the above-mentioned approximations. It is also interesting to note that
the phase boundaries determined by the two methods become closer together as the spin
value S increases [8]. (For a detailed comparison and discussion of both Matsubara and TFD
approaches as well as other methods in the context of quantum spin-glass models, we refer the
interested reader to references [28, 29].)

Within the approximation given by equation (17), the effective single-site quantum spin
Hamiltonian becomes

Heff(ξ) = −1

2
J 2χS2

z − (DxS
2
x +DyS

2
y )− Jξ

√
qSz (18)

and contains the order parameter q and the susceptibility χ which, in turn, are the solutions of
the system of equations
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The critical line is given by the equation 1 = Jχ (equation (15)) with q = 0, and from
equation (20) we obtain

2βD = ln

{
2

[
βJ

sinh(β�)

(β�)
− cosh(β�)

]}
. (21)

The corresponding phase diagram in the parameter space is presented in figure 1 (kBT ,Dx,Dy)

and the anisotropy–temperature dependences of the related quantities, namely χ and q, are
given for Dx = Dy in figure 2 and for Dx �= Dy in figure 3. The kBT –Dx–Dy surface in

† Here, the finite-time termQab(t − t ′) in the instantaneous approximation corresponds to the replica-diagonal order
parameter p in the formulation of Ghatak and Sherrington (which gives a non-trivial quadrupolar contribution), in
contrast to q which is given by the static time-independent quantity in the dynamic approach (and corresponds to the
replica-off-diagonal contribution in the replica formalism).
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Figure 1. The phase diagram with S = 1 for the biaxial anisotropy and temperature (Dx,Dy, T ).
The surface separates the spin-glass (SG) phase from the paramagnetic region (P). The inset
shows the critical line for Dx = Dy when the quantum model reduces to the classical one with
uniaxial anisotropy. The tricritical point (TP) separates continuous and discontinuous (broken line)
transitions between SG and P phases.
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Figure 2. The susceptibility (χ) and the order parameter
(q) as functions of the temperature (T ) for various
uniaxial anisotropies Dx = Dy = D: D = 0.2 (solid
line),D = 0.5 (dashed line) andD = 0.7 (dashed–dotted
line).

Figure 3. The susceptibility (χ) and the order parameter
(q) as functions of the temperature (T ) for various biaxial
anisotropies Dx �= Dy = 0.1: Dx = 0.2 (solid line),
Dx = 0.8 (dashed line), D = 1.2 (dashed–dotted line)
and Dx = 1.8 (dashed–double-dotted line).

figure 1 represents the locus of the continuous phase transition except for that portion of the
line (resulting from the cut of the surface by the planeDx −Dy = 0 where the phase transition
occurs with a discontinuous change of χ and q) which ends with the tricritical point—this is
precisely the line found by Ghatak and Sherrington† for the model (3).

† The self-consistent equations (19) and (20) for q and χ reduce in the limit Dx → Dy ≡ D (classical case) exactly
to those found by Ghatak and Sherrington using the replica method on observing that χ = β(p − q), where p is the
replica-diagonal order (quadrupolar) parameter introduced by Ghatak and Sherrington.
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4. Summary and final remarks

We have studied the case of a quantum Ising spin glass withS = 1 (representative of the integer-
valued spin models) with biaxial crystal-field effects. We determined the critical surface in the
three-dimensional parameter space (J,Dx,Dy) (see (1)) and discussed the relationship of the
quantum model to the related classical system (for a particular choice of the biaxial anisotropy
parameters) studied by Ghatak and Sherrington. It should be pointed out that the solutions
for the order parameter and susceptibility within the spin-glass phase are only approximate, as
replica-symmetry-equivalent solutions are always unstable and unsatisfactory.

The unresolved issue in this work is the construction of the replica-symmetry-breaking
(RSB) solution for a quantum SG model studied here. Generally, it is accepted that RSB can be
interpreted as a factorization of the phase space into an (ultrametric) hierarchy of ‘valleys’ or
pure states separated by macroscopic barriers. For systems with discontinuous SG transitions,
an effective factorization of the phase space into a finite number of pure states is expected,
making the strong non-ergodic continuous RSB less probable as compared to the single-step
RSB which might survive. It would also be interesting to see whether the full Parisi treatment
will alter the location of the first-order transition line. We hope to address the stability problem
in a future paper. Finally, it is evident that the model studied here is not yet sufficiently close to
real spin-glass systems. The effects of random anisotropy, net ferromagnetic interaction and
finite-dimensionality effects require further study.
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